OKLAHOMA STATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5713 Linear System Spring 1998 Midterm Exam #1

Name :	 	
Student ID:	 	
F-Mail Address:		

Problem 1:

A system has zero-state response

$$y(t) = f\left\{u(t)\right\} = \int_{-\infty}^{\infty} (\tau - t)^3 u(\tau) 1(t - \tau - 1) d\tau$$

where the unit-step function $1(\lambda)$ is defined by

$$1(\lambda - a) = \begin{cases} 0, & \text{for } \lambda < a \\ 1, & \text{for } \lambda \ge a \end{cases}.$$

Determine whether this system is or is not a) causal, b) time-varying, c) zero-memory and d) zero-state linear. Please justify your answer.

Problem 2: Linearize the bilinear control system

$$\ddot{y}(t) + (3 + \dot{y}^{2}(t))\dot{y}(t) + (1 + y(t) + y^{2}(t))u(t) = 0$$

about the equilibrium solution (y = 0, $\dot{y} = 0$) when input u(t) = 0. Show the linearized state space representation.

Problem 3:

Consider the proper rational transfer function with complex conjugate poles, as, e.g., in the transfer function $H(s) = \frac{as + b}{(s+c)^2 + d^2}$, then H(s) can be written as

$$H(s) = \frac{a/(s+c)}{1 + \left(\frac{d^2}{(s+c)^2}\right)} + \frac{\frac{(b-ac)}{(s+c)^2}}{1 + \left(\frac{d^2}{(s+c)^2}\right)}$$

and can be realized as indicated in the block diagram shown on the left. $\frac{1}{q-\lambda_i}$ and $q=\frac{d}{dt}$ denotes the integrator building block shown on the right.

<u>Problem 4</u>: Find the observable canonical form realization (in minimal order) for discrete-time system

$$\ddot{y}(t) + 2e^{-2t}\dot{y}(t) + 3\cos t \ y(t) = t\ddot{u}(t) + e^{-t}\dot{u}(t) - u(t)$$

Notice that gain blocks may be time-varying.